
1 exp (-- at) {cp (x --  vt) + ~p (x + vt) + t) = - i  

-+-a ff r a V v2 t2_ (~_x )Z )  -[ ~/v2t2_(~_x)  2 Ida}, 
x--vt 

where Io, I~ are Bessel functions of imaginary argument of the zeroth and first order, re- 
spectively. All the appropriate concentration profiles are here in agreement to 1.5E accu- 
racy, which indicates the efficiency of the computation method examined above. 

NOTATION 

t, time; x, coordinate; P, probability; a, characteristic frequency of turbulent pulsa- 
tions; D, coefficient of turbulent diffusion; R', integer part of the number R/2; and R" = 
R--R'. 

2. 

3. 

4. 
5. 
6. 
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SOLUTION OF HEAT-CONDUCTION PROBLEMS IN HETEROGENEOUS MEDIA 

BY THE INTEG~kL RELATIONS METHOD 

Yu. V. Kalinovskii UDC 536.2 

The integral relations method is developed to solve heat-conduction problems in a 
two-component complex medium and nonstationary filtration for the case of bounded 
and unbounded domains. 

The integral relations method is used sufficiently extensively to solve heat-conduction 
problems because of thesimplicity of the method itself and of the approximate solutions ob- 
tained with its use. A detailed survey and application of this method to solve different 
linear and nonlinear heat-transfer problems in homogeneous bodies can be found in [i]; this 
method is also applied in other branches of the mechanics of continuous media, e.g., in the 
theory of nonstationary filtration [2]. 

The method of integral relations has not been used to solve heat-conduction problems in 
heterogeneous continuous media; however, its application to filtration problems in binary 
media has been attempted (the equations of heat propagation in heterogeneous media [3] are 
analogous to the equations of nonstationary filtration of a homogeneous fluid in porous- 
cracked media [4, 5]). A completely degenerate system of heat-conduction equations in a two- 
component continuous medium (~i = 0, e2 = 0), reduced to one equation, was taken as the basis 
in [6]. In such an approach it is required to take account of the singularity in the formu- 
lation of the initial and boundary conditions [7, 8], which is inconvenient, and also the 
domain of application of the method is shrunken (the condition el ~ 0 is not always satisfied). 
Moreover, the dimension of the perturbed zone turns out to be different from zero at the ini- 
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tial time in [6], which is physically inexplicable. The paper [9] is devoid of the disad- 
vantages listed above, however the integral relations there are inaccurately compiled; uti- 
lization of such relations to solve nonlinear problems results in physically impossible re- 
sults, the dimension of the perturbed zone turns out to be a complex number at a certain 
time. Let us also note that the integral relations method has generally not been used to 
solve heat-conduction problems in heterogeneous media for domains of finite size. 

i. The system of heat-conduction equations for a two-component continuous medium has 
the following form in the case of axial symmetry 

g I === 

OTt 1 0 OTi 
el - ~ - -  q (P, O) = Z --O -@o O - -  

OT2 q_ q (9, O) =- ~ x  l 0 OT~ 
oo p p 0,-7' 

0 =-: t/'t-, 9 : r/R, X =: a'dR z, 

m(~c,  m2). 2 lnl~t 
-. g 2 : . . . . . .  , Of - -  , 

11Z2~2C 2 / IZ1)~1  r / 1 2 ' ~ 2 C  2 

T : I1L,"~.,C2/O;. 

Let the initial and boundary conditions be 

(i) 

(2) 

0 0: T~ :--: T2 ,:: 0, 

e- , -  o : ,,, o (T, + <~7"~) ~-(o), 
Op 

9-+0: T~-= T.,. (3) 

Just as in solving the ordinary Fourier equation by the integral relations method~ we 

introduce moving perturbation zones 11 and la in the medium consisting of particles of the 
first component (we call this the first medium), and in the medium consisting of particles 
of the second component (the second medium), and consider the exterior of the perturbation 
zones unperturbed. The conditions on the boundary of these zones are 

c)T~ 
9 -li(O): Ti - 0 ,  - ..... '- - 0, i - - :  t, 2. 

We seek the distribution of the desired quantities in the form 

T~ :--~ A~ In 9/& -[- Bi <-- Cig/&, 

w h i c h ,  t a k i n g  a c c o u n t  o f  t h e  b o u n d a r y  c o n d i t i o n s  a n d  o f  ( 4 ) ,  y i e l d s  

T~ = Q (~) (t + In ,o/,'z - -~ /4) ,  Q (o) ~:: ~-(o)/(i + O -  

To determine Z i we use (I) to compile integral relations: 

/, 11 

0 0 

l z 1~ 
" aT2 l, 

Taking into. account that 

we will have 

q ( %  O) = To_ (9, 0 ) - -  T , (9 ,  0), 

tl f~ 

j" 9q(P, O) d o = i" 9T2dp + 
o 

I t  11 

f or <o- j' pr,<o, 

(4) 

(5) 

(6) 

(7) 

(8) 
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12 l~ la la 

~ pq (p, O) do --~ ,t pTSdp --  ~" pT,dp @ t' OT'dp" 
0 0 0 i'2 

d 

One expression is used in [9] in place of (8) and (9) 

(9) 

Is II 

.t" pTsdp--  t' pTidp. 
0! ~ (i0) 

U t i l i z a t i o n  of  (10) i n s t e a d  of  (8) and (9) i s  i n a c c u r a t e  as  w i l l  be shown below.  

The p h y s i c a l  meaning of  i n t r o d u c i n g  t h e  p e r t u r b a t i o n  zones  i s  t h e  f o l l o w i n g :  i t  i s  con-  
s i d e r e d  t h a t  t he  p e r t u r b a t i o n  produced  on the  bounda ry  in  a d d i t i o n  to  t he  h e a t  t r a n s f e r  be -  
tween the  media w i l l  p roduce  a moving p e r t u r b a t i o n  zone l : ( 0 )  i n  t he  f i r s t  medium, and l a ( 0 )  
in  the  second .  The a p p r o p r i a t e  medium i s  c o n s i d e r e d  u n p e r t u r b e d  o u t s i d e  t h e s e  zones .  Hence,  
to compile the integral relations each of Eqs. (i) is integrated strictly within the limits 
of the appropriate zones. 

It should be noted that the use of (9) is inconvenient since the last" term in the right 
side of (9) will have a sufficiently complex form when (6) is substituted. This is easily 
averted if instead of (I) as initial system, an equivalent system is taken: 

OT, OT2 1 0 0 (T,-? e,T~), 
~ - 0 0 -  + 0--6 = z -p ~ P op 

OTt + 1 0 OTl 
el T i - -  To = X -- �9 

oo - " p p-o - ( l l )  

Then the integral relations are written as 

j' O T_, ', OTo �9 OTi OT= do -t- s2%p ~ 9 " -  t,, 
ei P - o 0 -  do + j p - ~  ' = %P Op o o 

0 0 

[1 Ii 

t j i'o' el p - - ~ -  d o + p (T, - -  T~) dp = %p ---~p--- 
o o (12) 

As is customary, the integral relations are expanded by using the formulas for differen- 
tiation of a definite integral with respect to a parameter and taking into account that the 
second medium is considered unperturbed in the interval Ix-12. We obtain 

dzi dz.z -- 12%(1 @%)Q(O), 
ei - ~  -k dO 

which is easily solved. 

dz~ 
si -:f + z i - - z s =  12%Q(0), 

do 

zi Q(O) # = i (0), .(13) 

We obtain for the case Q = const 

l~-- 112%-k~, { ( l+%)Oq-  1 - -  e*% [ 1 - -  exP q- e, lq-e,e, 0 ) ] } ,  

I i,[ (I+)]I 12 12% (l + %) O - -  ei - -  1 - - exp  0 . 
2 = l + s ~  l + s i  el (14) 

The equality of the perturbation zone to zero at the initial time is used to determine 
the constant of integration. 

If we set cxs2 ~ 1 in (14), then the dependences (14) go over into a formula for a 
homogeneous continuous medium with certain total parameters: 
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l ~ = l ~ = l  2 -  1 2 z ( l + a S )  O. 
1 + e~ (15) 

2. Since the perturbations in the first medium are propagated more rapidly than in the 
second, then we have three phases of the process in a bounded domain, rather than the two 
as in a homogeneous medium: 

a) The first phase, that 11 and l= have still not reached the domain boundary (process 
in an infinite domain), was examined above; 

b) The second phase is when l: has reached the domain boundary but 12 not yet; 

c) The third phase is when ~2 has reached the domain boundary. 

It is easy to see that the construction of the solution for the second and third phases 
of the process will also reduce to integrating a system of type (13). For instance, if we 
have a circular plate of radius p = 1 with a heat-insulated outer boundary, then distribution 
T2 in the second phase remains in form (6), but TI is sought in the form 

T~ = b, (0) "6 Q (0) (1 -4- In p - -  p). 
From the integral relations 

] f2 

p - - ' -  ep + P ep = xp o + 
0 0 

(16) 

1 I 

e, p ~ - ~ - d p +  p ( T i - -  T2) dp = %p -~p-- 
0 0 (17) 

we determine b:(8) and 12(8). The constants of integration are found from the continuity of 
the passage from one phase to another, as in the case of a homogeneous medium [1, 2]. 

For Q = const, the solution has the form 

l q -~ t  l q - e i  12X 1 ,+el J 1--exp (O--Ol) , (18) 
Et 

l~=t*+ 12E(1+%)(0_00_q_  12e~_________%_~ [ 1--1" 1 - - ~ % ]  { [ l q-a~ ]} 
1 "6 e~ 1 -q- ei 12% i ~ I - -  exp (0 --  00 . sl (19) 

The duration of the first phase of the process 0: is determined from the first equation 
of (14) for ~: = I; l* is determined from the second equation of (14) for 8 = 81. For the 
third phase of the process both quantities are sought in the form 

Ti = b~ (0) "6 Q (0)(1 "6 In p - -  p). 

From the integral relations 

I I 

0 0 

we determine bl(O)  

Ei  

OT~ 0 i' p - - - ~  dp = XP ~ (T~ "6 e2T2) 

1 1 

0 0 

and b2(8), and for the 

~ I p (Tl - -  T~) dp = XP 

case of Q = const the solution has the form 

(20) 

(21) 

1 "6 ~t 1 -[- el L I "6 el ~i 
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The constants of integration for (21) are determined from the condition of continuity of 
passage of the second phase of the process into the third. The duration of the second phase 

@a is determined from (19) for l= = i; b* is determined from (18) for 0 = @a. The first 
terms in the right sides of the dependences (22) and (23) agree with the expression for a 
homogeneous continuous medium with certain total parameters. 

3. The integral relations method can be used effectively to solve nonlinear systems of 
the type (i). We show its application in the example of a known problem form the theory of 
filtration, the problem of ideal gas filtration in a porous-cracked stratum. There is no 
exact solution of this problem at this time. 

Plane-parallel filtration of an ideal gas in a porous-cracked stratum is described by 
the following system of equations: 

OPi OP2 1 0 O 
+ ao o ap o 

e~ ~ -6 P~ P= I 0 OP~ 
p Op Op 

• = a*%/R 2, a* = (ks 

q = mjm> ~2 = kJlq, 0 = t/%. (24)  

We can arrive at the system (24) in problems of heat conduction in a two-component complex 
medium under the assumption that the properties of the components depend as follows on the 
temperature : 

Xt = )~io (1 -6 I~TO (~ = const), 

Z2 = ~20 (1 -6 [3T2), 

~z = % [(1 -6 [3T 0 -6 (1 -6 [3T2)1. 

In the case of starting up a borehole with a constant mass debit in an initially unper- 
turbed stratum, the initial and boundary conditions for (24) are written thus: 

0 :  0:P =P  .... 1, 

0 
p = u0 t ' -  (P~ + s,_,P~) == Mo = const, 

c)9 

v = . 0 :  P -:PJ; 
u: o : ~  6 ,  (O)lli (0) = (5~, (O)/[ 2 (0), u o (< 1. (25)  

Let us introduce two fictitious moving borehole radii 61(0), 8a(@)in the first and second 
media, respectively (such a method is used in the case of filtration in an ordinary porous 
medium, say, [i0]). 

Giving the distribution of the desired quantities in the form 

P~ : : A, In p/l i -i- Bi -6 Ci()/]i (26) 

and taking account of the boundary conditions and the conditions 

2~ - i, 
p Q(O) : 

~ - =  o, 
09 (27) 

we obtain 

P~ = I ~ - - M ( t  ' l n9 !1 i - -9 / l , ) ;  M==M0/(1 ~ - e e ) ( 1 - - u o ) .  (28)  

U s i n g  (24)  and  ( 2 8 ) ,  we c o m p i l e  t h e  i n t e g r a l  r e l a t i o n s  e x a c t l y  a s  f o r  t h e  l i n e a r  e q u a t i o n s ,  
b u t  we t a k e  i n t o  a c c o u n t  t h a t  t h e  q u a n t i t y  p2 b e t w e e n  ;1  and  l= equaKs  1 i n  t h i s  c a s e .  Ex -  
panding the integral relations, we obtain 

d g 2 
8~--dO [/'~ (0.5 - -  [}1. @ ~ [ / 2  (0,5 - -  I)] = • @ e2) M, (29)  
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d M 

d~ 

1 

I --= ~i :~ [1 @ M (1 -+- In u -- u)] 1/2du; u = p/l,. (30) 

The integral I is tabulated [i0]. Solving (29), we obtain 

�9 1 T e i  [ 0 , 5 - - I  1 - ~ l  1 2 e l ( O , 5 - - 1 )  i '  

12= • {(l+e2)M O--12~il--~i~-______!~ [1--exp[__ (l+eOM 0]]} 
2 ~ 1  " 0 . 5 - - / - -  1 - t e l  "128~ (0.5 - -  I) " ( 3 1 )  

As for the linear equations, (31) goes over into a dependence for a homogeneous medium 
for s2 = i (in this case it is always possible to set et = i in filtration theory) 

l~ ---- 12 = l ~ --= •  (1 + e~) O. 
(1 @ e~)(0.5 - -  I) ( 3 2 )  

Let us note yet another circumstance. With great accuracy the integral I can be repre- 
sented in the form [I0] 

I = 0.5 -t- o J i M -  piimping, 

I = 0,5 - -  r - -  selection, 

~o~ = c o n s t ,  ~o~ = c o n s t ,  ,o~ va~%. (33) 

It is then clearly seen from (31) that the processes of gas pumping in the stratum (corres- 
ponds to the heating process in heat conduction theory) and selection occur in a different 
way that does not hold for the linearized equations. For an ordinary porous medium this fact 
follows from the exact solution of the Boussinesq equation, as Polubarinova-Kochina [Ii] and 
Barenblatt [12] indicated. 

Let us note that if the integral relations for the problem considered here are compiled 
in conformity with [9], then the solution will have the form 

l ~ =  l - ~ t  0 . 5 - - I  ( l + ~ l ) ( 6 - - M )  12~t (0,5 - -  I) ' 

1 -+-e~ t O . 5 - - 1  (1 -+eO(6--M) [ 12~(0.5-- (34) 

It is seen from (34) that at a certain time the quantity l~ becomes negative; from physi- 
cal considerations this is false. Moreover, l, and la in (34) depend on the parameter M 
that characterizes the boundary conditions, which should also not hold. Dependences (31) are 
devoid of these inconsistencies, therefore, the integral relations should be compiled just 
as has been mentioned above (see (7)-(9), (12)). 

4. For nonlinear heat-conduction equations in heterogeneous media in a bounded domain, 
the scheme for constructing solutions for the second and third phases of the process remains 
exactly the same as for linear equations. However, in this case the construction of the so- 
lution reduces to integrating a nonlinear system of a differential equations, which can re- 
duce to a Riccati equation in the example considered in Sec. 3, and later to a linear second 
order equations whose solution is expressed in terms of special functions. The detailed 
calculations are expounded in [13], where it is shown that an asymptotic representation of 
these functions can be used. 

If the problem examined in Sec. 3 is supplemented by the condition 

oP~ p = l :  - -  : 0 ,  
09 ( 3 5 )  

then the solution of this problem for the third phase of the process (which is often of 
greatest interest) will have the following form [13]: 
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P~ b 2 = z (0) -6 M ( I  -6 Inp - -p ) ,  (_36) 

b t =  1 -6 ~ib* 2• -683) (0__02) __ (1 - -~ i~ )~M , (37) 
1 -6 ~i 1 -6 ~i (1 -6 ~)[1 -6 ~b* - -  2riM(1 -6 %)(0 -- 02)] 

bz= 1 -I- 8tb______* 2• -6s2) (0--02) + ei(1 --st%)nM 
1 -6 s~ 1 + 8t (1 -6 8,)[1 -6 stb*--  2• (1 -6 82) (0- -  02) ] (38) 

NOTATION 

t, time, sec; r, lag time, sec; mi, part of the volume occupied by the appropriate com- 
ponent (porosity of the i-th medium in the filtration problem); r, polar coordinate, m; ci, 
specific heat, J/kg.deg; Yi, density, kg/m3; R, distance scale, m; %~, thermal conductivity 
W/m-deg; a, thermal diffusivity coefficient, m2/sec; Q(6), parameter characterizing the 
boundary conditions; ~i(8), relative size of the moving perturbation zone; Ti, tem- 
perature measured from the initial temperature and referred to a certain temperature 
scale; 01, 02, durations of the first and second phases of the process, respectively; l*, 
square of the relative size of the perturbation zone in the second medium at the instant of 
the beginning of the second phase of the process; b*, relative temperature in the first me- 
dium on the heat-insulated outer boundary at the instant of beginning the third phase of the 
process (gas pressure in the first medium on the outer impermeable boundary at the time of 
beginning the third phase of the process in the filtration problem); ki, permeability, m 2, 
u, gas viscosity, Pa.sec; a*, coefficient of piezoconduction, ma/sec; Pi, gas pressure re- 
ferred to the pressure in the initially unperturbed stratum; po, pressure in the initially 
unperturbed stratum, Pa; Mo, parameter characterizing the boundary conditions. Subscripts: 
i, first medium; 2, second medium. 
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